Use Python to query data
Use the InfluxDB influxdb_client_3
Python client library module and SQL or InfluxQL to query data stored in InfluxDB.
Execute queries and retrieve data over the Flight+gRPC protocol, and then process data using common Python tools.
Get started using Python to query InfluxDB
This guide assumes the following prerequisites:
- an InfluxDB Clustered database with data to query
- a database token with read access to the database
To learn how to set up InfluxDB and write data, see the Setup instructions in the Get Started tutorial.
Create a Python virtual environment
This guide follows the recommended practice of using Python virtual environments. If you don’t want to use virtual environments and you have Python installed, continue to Query InfluxDB. Python virtual environments keep the Python interpreter and dependencies for your project self-contained and isolated from other projects.
To install Python and create a virtual environment, choose one of the following options:
-
Python venv: The
venv
module comes standard in Python as of version 3.5. -
Anaconda® Distribution: A Python/R data science distribution that provides Python and the conda package and environment manager.
Install Python
-
Follow the Python installation instructions to install a recent version of the Python programming language for your system.
-
Check that you can run
python
andpip
commands.pip
is a package manager included in most Python distributions.In your terminal, enter the following commands:
python --version
pip --version
Depending on your system, you may need to use version-specific commands–for example.
python3 --version
pip3 --version
If neither
pip
norpip<PYTHON_VERSION>
works, follow one of the Pypa.io Pip installation methods for your system.
Create a project virtual environment
-
Create a directory for your Python project and change to the new directory–for example:
mkdir ./PROJECT_DIRECTORY && cd $_
-
Use the Python
venv
module to create a virtual environment–for example:python -m venv envs/virtualenv-1
venv
creates the new virtual environment directory in your project. -
To activate the new virtual environment in your terminal, run the
source
command and pass the path of the virtual environmentactivate
script:source envs/VIRTUAL_ENVIRONMENT_NAME/bin/activate
For example:
source envs/virtualenv-1/bin/activate
Install Anaconda
-
Follow the Anaconda installation instructions for your system.
-
Check that you can run the
conda
command:conda
-
Use
conda
to create a virtual environment–for example:conda create --prefix envs/virtualenv-1
conda
creates a virtual environment in a directory named./envs/virtualenv-1
. -
To activate the new virtual environment, use the
conda activate
command and pass the directory path of the virtual environment:conda activate envs/VIRTUAL_ENVIRONMENT_NAME
For example:
conda activate ./envs/virtualenv-1
-
When a virtual environment is activated, the name displays at the beginning of your terminal command line–for example:
(virtualenv-1) $ PROJECT_DIRECTORY
Query InfluxDB
Install the influxdb3-python library
The influxdb3-python
package provides the influxdb_client_3
module for integrating InfluxDB Clustered with your Python code.
The module supports writing data to InfluxDB and querying data using SQL or InfluxQL.
Install the following dependencies:
* Already installed in the Write data section
influxdb3-python
*: Provides theinfluxdb_client_3
module and also installs thepyarrow
package for working with Arrow data returned from queries.pandas
: Provides pandas modules for analyzing and manipulating data.tabulate
: Provides thetabulate
function for formatting tabular data.
Enter the following command in your terminal:
pip install influxdb3-python pandas tabulate
With influxdb3-python
and pyarrow
installed, you’re ready to query and
analyze data stored in an InfluxDB database.
Create an InfluxDB client
The following example shows how to use Python with the influxdb_client_3
module to instantiate a client configured for an InfluxDB Clustered database.
In your editor, copy and paste the following sample code to a new file–for
example, query-example.py
:
# query-example.py
from influxdb_client_3 import InfluxDBClient3
# Instantiate an InfluxDBClient3 client configured for your database
client = InfluxDBClient3(
host='cluster-host.com',
token='DATABASE_TOKEN',
database='DATABASE_NAME'
)
Replace the following configuration values:
database
: the name of the InfluxDB Clustered database to querytoken
: a database token with read access to the specified database. Store this in a secret store or environment variable to avoid exposing the raw token string.
Execute a query
To execute a query, call the following client method:
and specify the following arguments:
- query: A string. The SQL or InfluxQL query to execute.
- language: A string (
"sql"
or"influxql"
). Thequery
language.
Example
The following examples shows how to use SQL or InfluxQL to select all fields in a measurement, and then output the results formatted as a Markdown table.
# query-example.py
from influxdb_client_3 import InfluxDBClient3
client = InfluxDBClient3(
host='cluster-host.com',
token='DATABASE_TOKEN',
database='DATABASE_NAME'
)
# Execute the query and return an Arrow table
table = client.query(
query="SELECT * FROM home",
language="influxql"
)
print("\n#### View Schema information\n")
print(table.schema)
print(table.schema.names)
print(table.schema.types)
print(table.field('room').type)
print(table.schema.field('time').metadata)
print("\n#### View column types (timestamp, tag, and field) and data types\n")
print(table.schema.field('time').metadata[b'iox::column::type'])
print(table.schema.field('room').metadata[b'iox::column::type'])
print(table.schema.field('temp').metadata[b'iox::column::type'])
print("\n#### Use PyArrow to read the specified columns\n")
print(table.column('temp'))
print(table.select(['room', 'temp']))
print(table.select(['time', 'room', 'temp']))
print("\n#### Use PyArrow compute functions to aggregate data\n")
print(table.group_by('hum').aggregate([]))
print(table.group_by('room').aggregate([('temp', 'mean')]))
Replace the following configuration values:
database
: the name of the InfluxDB Clustered database to querytoken
: a database token with read access to the specified database. Store this in a secret store or environment variable to avoid exposing the raw token string.
Next, learn how to use Python tools to work with time series data:
Was this page helpful?
Thank you for your feedback!
Support and feedback
Thank you for being part of our community! We welcome and encourage your feedback and bug reports for InfluxDB Clustered and this documentation. To find support, use the following resources:
Customers with an annual or support contract can contact InfluxData Support.