Documentation

Track state changes across task executions

Problem

It’s common to use InfluxDB tasks to evaluate and assign states to your time series data and then detect changes in those states. Tasks process data in batches, but what happens if there is a state change across the batch boundary? The task won’t recognize it without knowing the final state of the previous task execution. This guide walks through creating a task that assigns a state to rows and then uses results from the previous task execution to detect any state changes across the batch boundary so you don’t miss any state changes.

Solution

Explicitly assign levels to your data based on thresholds.

Solution Advantages

This is the easiest solution to understand if you have never written a task with the monitor package.

Solution Disadvantages

You have to explicitly define your thresholds, which potentially requires more code.

Solution Overview

Create a task where you:

  1. Boilerplate. Import packages and define task options.
  2. Query your data.
  3. Assign states to your data based on thresholds. Store this data in a variable, i.e. “states”.
  4. Write the “states” to a bucket.
  5. Find the latest value from the previous task run and store it in a variable “last_state_previous_task”.
  6. Union “states” and “last_state_previous_task”. Store this data in a variable “unioned_states”.
  7. Discover state changes in “unioned_states”. Store this data in a variable “state_changes”.
  8. Notify on state changes that span across the last two tasks to catch any state changes that occur across task executions.

Solution Explained

  1. Import packages and define task options and secrets. Import the following packages:
  • Flux Telegram package: This package

  • Flux InfluxDB secrets package: This package contains the secrets.get() function which allows you to retrieve secrets from the InfluxDB secret store. Learn how to manage secrets in InfluxDB to use this package.

  • Flux InfluxDB monitoring package: This package contains functions and tools for monitoring your data.

    import "contrib/sranka/telegram"
    import "influxdata/influxdb/secrets"
    import "influxdata/influxdb/monitor"
    
    option task = {name: "State changes across tasks", every: 30m, offset: 5m}
    
    telegram_token = secrets.get(key: "telegram_token")
    telegram_channel_ID = secrets.get(key: "telegram_channel_ID")
    
  1. Query the data you want to monitor.

    data = from(bucket: "example-bucket")
        // Query for data from the last successful task run or from the 1 every duration ago.
        // This ensures that you won’t miss any data.
        |> range(start: tasks.lastSuccess(orTime: -task.every))
        |> filter(fn: (r) => r._measurement == "example-measurement")
        |> filter(fn: (r) => r.tagKey1 == "example-tag-value")
        |> filter(fn: (r) => r._field == "example-field")
    

    Where data might look like:

    _measurement tagKey1 _field _value _time
    example-measurement example-tag-value example-field 30.0 2022-01-01T00:00:00Z
    example-measurement example-tag-value example-field 50.0 2022-01-01T00:00:00Z
  2. Assign states to your data based on thresholds. Store this data in a variable, i.e. “states”. To simplify this example, there are only two states: “ok” and “crit.” Store states in the _level column (required by the monitor package).

    states =
        data
            |> map(fn: (r) => ({r with _level: if r._value > 40.0 then "crit" else "ok"}))
    

    Where states might look like:

    _measurement tagKey1 _field _value _level _time
    example-measurement example-tag-value example-field 30.0 ok 2022-01-01T00:00:00Z
    example-measurement example-tag-value example-field 50.0 crit 2022-01-01T00:01:00Z
  3. Write “states” back to InfluxDB. You can write the data to a new measurement or to a new bucket. To write the data to a new measurement, use set() to update the value of the _measurement column in your “states” data.

    states
        // (Optional) Change the measurement name to write the data to a new measurement
        |> set(key: "_measurement", value: "new-measurement")
        |> to(bucket : "example-bucket") 
    
  4. Find the latest value from the previous task run and store it in a variable “last_state_previous_task”,

    last_state_previous_task =
        from(bucket: "example-bucket")
            |> range(start: date.sub(d: task.every, from: tasks.lastSuccess(orTime: -task.every))
            |> filter(fn: (r) => r._measurement == "example-measurement")
            |> filter(fn: (r) => r.tagKey == "example-tag-value")
            |> filter(fn: (r) => r._field == "example-field")
            |> last() 
    

    Where last_state_previous_task might look like:

    _measurement tagKey1 _field _value _level _time
    example-measurement example-tag-value example-field 55.0 crit 2021-12-31T23:59:00Z
  5. Union “states” and “last_state_previous_task”. Store this data in a variable “unioned_states”. Use sort() to ensure rows are ordered by time.

    unioned_states =
        union(tables: [states, last_state_previous_task])
            |> sort(columns: ["_time"], desc: true)
    

    Where unioned_states might look like:

    _measurement tagKey1 _field _value _level _time
    example-measurement example-tag-value example-field 55.0 crit 2021-12-31T23:59:00Z
    example-measurement example-tag-value example-field 30.0 ok 2022-01-01T00:00:00Z
    example-measurement example-tag-value example-field 50.0 crit 2022-01-01T00:01:00Z
  6. Use monitor.stateChangesOnly() to return only rows where the state changed in “unioned_states”. Store this data in a variable, “state_changes”.

    state_changes =
        unioned_states 
            |> monitor.stateChangesOnly()
    

    Where state_changes might look like:

    _measurement tagKey1 _field _value _level _time
    example-measurement example-tag-value example-field 30.0 ok 2022-01-01T00:00:00Z
    example-measurement example-tag-value example-field 50.0 crit 2022-01-01T00:01:00Z
  7. Notify on state changes that span across the last two tasks to catch any state changes that occur across task executions.

    state_changes =
        data
            |> map(
                fn: (r) =>
                    ({
                        _value:
                            telegram.message(
                                token: telegram_token,
                                channel: telegram_channel_ID,
                                text: "state change at ${r._value} at ${r._time}",
                            ),
                    }),
            )
    

    Using the unioned data, the following alerts would be sent to Telegram:

    • state change at 30.0 at 2022-01-01T00:00:00Z
    • state change at 50.0 at 2022-01-01T00:01:00Z

Was this page helpful?

Thank you for your feedback!


The future of Flux

Flux is going into maintenance mode. You can continue using it as you currently are without any changes to your code.

Read more

InfluxDB v3 enhancements and InfluxDB Clustered is now generally available

New capabilities, including faster query performance and management tooling advance the InfluxDB v3 product line. InfluxDB Clustered is now generally available.

InfluxDB v3 performance and features

The InfluxDB v3 product line has seen significant enhancements in query performance and has made new management tooling available. These enhancements include an operational dashboard to monitor the health of your InfluxDB cluster, single sign-on (SSO) support in InfluxDB Cloud Dedicated, and new management APIs for tokens and databases.

Learn about the new v3 enhancements


InfluxDB Clustered general availability

InfluxDB Clustered is now generally available and gives you the power of InfluxDB v3 in your self-managed stack.

Talk to us about InfluxDB Clustered