Documentation

Assign custom states to data

Problem

You may want to use the monitor package and take advantage of functions like monitor.stateChangesOnly(). However, monitor.stateChangesOnly() only allows you to monitor four states: “crit”, “warn”, “ok”, and “info”. What if you want to be able to assign and monitor state changes across custom states or more than four states?

Solution

Define your own custom stateChangesOnly() function. Use the function from the source code here and alter it to accommodate more than four levels. Here we account for six different levels instead of just four.

import "dict"
import "experimental"

stateChangesOnly = (tables=<-) => {
    levelInts =
        [
            "customLevel1": 1,
            "customLevel2": 2,
            "customLevel3": 3,
            "customLevel4": 4,
            "customLevel5": 5,
            "customLevel6": 6,
        ]

    return
        tables
            |> map(fn: (r) => ({r with level_value: dict.get(dict: levelInts, key: r._level, default: 0)}))
            |> duplicate(column: "_level", as: "____temp_level____")
            |> drop(columns: ["_level"])
            |> rename(columns: {"____temp_level____": "_level"})
            |> sort(columns: ["_source_timestamp", "_time"], desc: false)
            |> difference(columns: ["level_value"])
            |> filter(fn: (r) => r.level_value != 0)
            |> drop(columns: ["level_value"])
            |> experimental.group(mode: "extend", columns: ["_level"])
}

Construct some example data with array.from() and map custom levels to it:

array.from(
    rows: [
        {_value: 0.0},
        {_value: 3.0},
        {_value: 5.0},
        {_value: 7.0},
        {_value: 7.5},
        {_value: 9.0},
        {_value: 11.0},
    ],
)
    |> map(
        fn: (r) =>
            ({r with _level:
                    if r._value <= 2.0 then
                        "customLevel2"
                    else if r._value <= 4.0 and r._value > 2.0 then
                        "customLevel3"
                    else if r._value <= 6.0 and r._value > 4.0 then
                        "customLevel4"
                    else if r._value <= 8.0 and r._value > 6.0 then
                        "customLevel5"
                    else
                        "customLevel6",
            }),
    )

Where the example data looks like:

_value _level
0.0 customLevel2
3.0 customLevel3
5.0 customLevel4
7.0 customLevel5
7.5 customLevel5
9.0 customLevel6
11.0 customLevel6

Now apply our custom stateChangesOnly() function:

import "array"
import "dict"
import "experimental"

stateChangesOnly = (tables=<-) => {
    levelInts =
        [
            "customLevel1": 1,
            "customLevel2": 2,
            "customLevel3": 3,
            "customLevel4": 4,
            "customLevel5": 5,
            "customLevel6": 6,
        ]

    return
        tables
            |> map(fn: (r) => ({r with level_value: dict.get(dict: levelInts, key: r._level, default: 0)}))
            |> duplicate(column: "_level", as: "____temp_level____")
            |> drop(columns: ["_level"])
            |> rename(columns: {"____temp_level____": "_level"})
            |> sort(columns: ["_source_timestamp", "_time"], desc: false)
            |> difference(columns: ["level_value"])
            |> filter(fn: (r) => r.level_value != 0)
            |> drop(columns: ["level_value"])
            |> experimental.group(mode: "extend", columns: ["_level"])
}

data =
    array.from(
        rows: [
            {_value: 0.0},
            {_value: 3.0},
            {_value: 5.0},
            {_value: 7.0},
            {_value: 7.5},
            {_value: 9.0},
            {_value: 11.0},
        ],
    )
        |> map(
            fn: (r) =>
                ({r with _level:
                        if r._value <= 2.0 then
                            "customLevel2"
                        else if r._value <= 4.0 and r._value > 2.0 then
                            "customLevel3"
                        else if r._value <= 6.0 and r._value > 4.0 then
                            "customLevel4"
                        else if r._value <= 8.0 and r._value > 6.0 then
                            "customLevel5"
                        else
                            "customLevel6",
                }),
        )

data
    |> stateChangesOnly()

This returns:

_value _level
3.0 customLevel3
5.0 customLevel4
7.0 customLevel5
9.0 customLevel6

Was this page helpful?

Thank you for your feedback!


The future of Flux

Flux is going into maintenance mode. You can continue using it as you currently are without any changes to your code.

Read more

InfluxDB 3 Open Source Now in Public Alpha

InfluxDB 3 Open Source is now available for alpha testing, licensed under MIT or Apache 2 licensing.

We are releasing two products as part of the alpha.

InfluxDB 3 Core, is our new open source product. It is a recent-data engine for time series and event data. InfluxDB 3 Enterprise is a commercial version that builds on Core’s foundation, adding historical query capability, read replicas, high availability, scalability, and fine-grained security.

For more information on how to get started, check out: