Query using conditional logic
This page documents an earlier version of InfluxDB. InfluxDB v2 is the latest stable version. See the equivalent InfluxDB v2 documentation: Query using conditional logic.
Flux provides if
, then
, and else
conditional expressions that allow for powerful and flexible Flux queries.
Conditional expression syntax
// Pattern
if <condition> then <action> else <alternative-action>
// Example
if color == "green" then "008000" else "ffffff"
Conditional expressions are most useful in the following contexts:
- When defining variables.
- When using functions that operate on a single row at a time (
filter()
,map()
,reduce()
).
Evaluating conditional expressions
Flux evaluates statements in order and stops evaluating once a condition matches.
For example, given the following statement:
if r._value > 95.0000001 and r._value <= 100.0 then "critical"
else if r._value > 85.0000001 and r._value <= 95.0 then "warning"
else if r._value > 70.0000001 and r._value <= 85.0 then "high"
else "normal"
When r._value
is 96, the output is “critical” and the remaining conditions are not evaluated.
Examples
- Conditionally set the value of a variable
- Create conditional filters
- Conditionally transform column values with map()
- Conditionally increment a count with reduce()
Conditionally set the value of a variable
The following example sets the overdue
variable based on the
dueDate
variable’s relation to now()
.
dueDate = 2019-05-01
overdue = if dueDate < now() then true else false
Create conditional filters
The following example uses an example metric
variable to change how the query filters data.
metric
has three possible values:
- Memory
- CPU
- Disk
metric = "Memory"
from(bucket: "telegraf/autogen")
|> range(start: -1h)
|> filter(fn: (r) =>
if v.metric == "Memory"
then r._measurement == "mem" and r._field == "used_percent"
else if v.metric == "CPU"
then r._measurement == "cpu" and r._field == "usage_user"
else if v.metric == "Disk"
then r._measurement == "disk" and r._field == "used_percent"
else r._measurement != ""
)
Conditionally transform column values with map()
The following example uses the map()
function
to conditionally transform column values.
It sets the level
column to a specific string based on _value
column.
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> filter(fn: (r) => r._measurement == "mem" and r._field == "used_percent" )
|> map(fn: (r) => ({
r with
level:
if r._value >= 95.0000001 and r._value <= 100.0 then "critical"
else if r._value >= 85.0000001 and r._value <= 95.0 then "warning"
else if r._value >= 70.0000001 and r._value <= 85.0 then "high"
else "normal"
})
)
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> filter(fn: (r) => r._measurement == "mem" and r._field == "used_percent" )
|> map(fn: (r) => ({
// Retain all existing columns in the mapped row
r with
// Set the level column value based on the _value column
level:
if r._value >= 95.0000001 and r._value <= 100.0 then "critical"
else if r._value >= 85.0000001 and r._value <= 95.0 then "warning"
else if r._value >= 70.0000001 and r._value <= 85.0 then "high"
else "normal"
})
)
Conditionally increment a count with reduce()
The following example uses the aggregateWindow()
and reduce()
functions to count the number of records in every five minute window that exceed a defined threshold.
threshold = 65.0
from(bucket: "telegraf/autogen")
|> range(start: -1h)
|> filter(fn: (r) => r._measurement == "mem" and r._field == "used_percent" )
|> aggregateWindow(
every: 5m,
fn: (column, tables=<-) => tables |> reduce(
identity: {above_threshold_count: 0.0},
fn: (r, accumulator) => ({
above_threshold_count:
if r._value >= threshold then accumulator.above_threshold_count + 1.0
else accumulator.above_threshold_count + 0.0
})
)
)
threshold = 65.0
from(bucket: "telegraf/autogen")
|> range(start: -1h)
|> filter(fn: (r) => r._measurement == "mem" and r._field == "used_percent" )
// Aggregate data into 5 minute windows using a custom reduce() function
|> aggregateWindow(
every: 5m,
// Use a custom function in the fn parameter.
// The aggregateWindow fn parameter requires 'column' and 'tables' parameters.
fn: (column, tables=<-) => tables |> reduce(
identity: {above_threshold_count: 0.0},
fn: (r, accumulator) => ({
// Conditionally increment above_threshold_count if
// r.value exceeds the threshold
above_threshold_count:
if r._value >= threshold then accumulator.above_threshold_count + 1.0
else accumulator.above_threshold_count + 0.0
})
)
)
Was this page helpful?
Thank you for your feedback!
Support and feedback
Thank you for being part of our community! We welcome and encourage your feedback and bug reports for InfluxDB and this documentation. To find support, use the following resources:
Customers with an annual or support contract can contact InfluxData Support.