Documentation

Calculate the rate of change

See the equivalent InfluxDB v2 documentation: Calculate the rate of change.

Use the derivative() function to calculate the rate of change between subsequent values or the aggregate.rate() function to calculate the average rate of change per window of time. If time between points varies, these functions normalize points to a common time interval making values easily comparable.

Rate of change between subsequent values

Use the derivative() function to calculate the rate of change per unit of time between subsequent non-null values.

data
    |> derivative(unit: 1s)

By default, derivative() returns only positive derivative values and replaces negative values with null. Calculated values are returned as floats.

Given the following input:

_time _value
2020-01-01T00:00:00Z 250
2020-01-01T00:04:00Z 160
2020-01-01T00:12:00Z 150
2020-01-01T00:19:00Z 220
2020-01-01T00:32:00Z 200
2020-01-01T00:51:00Z 290
2020-01-01T01:00:00Z 340

derivative(unit: 1m) returns:

_time _value
2020-01-01T00:04:00Z
2020-01-01T00:12:00Z
2020-01-01T00:19:00Z 10.0
2020-01-01T00:32:00Z
2020-01-01T00:51:00Z 4.74
2020-01-01T01:00:00Z 5.56

Results represent the rate of change per minute between subsequent values with negative values set to null.

Return negative derivative values

To return negative derivative values, set the nonNegative parameter to false,

Given the following input:

_time _value
2020-01-01T00:00:00Z 250
2020-01-01T00:04:00Z 160
2020-01-01T00:12:00Z 150
2020-01-01T00:19:00Z 220
2020-01-01T00:32:00Z 200
2020-01-01T00:51:00Z 290
2020-01-01T01:00:00Z 340

The following returns:

|> derivative(unit: 1m, nonNegative: false)
_time _value
2020-01-01T00:04:00Z -22.5
2020-01-01T00:12:00Z -1.25
2020-01-01T00:19:00Z 10.0
2020-01-01T00:32:00Z -1.54
2020-01-01T00:51:00Z 4.74
2020-01-01T01:00:00Z 5.56

Results represent the rate of change per minute between subsequent values and include negative values.

Average rate of change per window of time

Use the aggregate.rate() function to calculate the average rate of change per window of time.

import "experimental/aggregate"

data
    |> aggregate.rate(every: 1m, unit: 1s, groupColumns: ["tag1", "tag2"])

aggregate.rate() returns the average rate of change (as a float) per unit for time intervals defined by every. Negative values are replaced with null.

aggregate.rate() does not support nonNegative: false.

Given the following input:

_time _value
2020-01-01T00:00:00Z 250
2020-01-01T00:04:00Z 160
2020-01-01T00:12:00Z 150
2020-01-01T00:19:00Z 220
2020-01-01T00:32:00Z 200
2020-01-01T00:51:00Z 290
2020-01-01T01:00:00Z 340

The following returns:

|> aggregate.rate(every: 20m, unit: 1m)
_time _value
2020-01-01T00:20:00Z
2020-01-01T00:40:00Z 10.0
2020-01-01T01:00:00Z 4.74
2020-01-01T01:20:00Z 5.56

Results represent the average change rate per minute of every 20 minute interval with negative values set to null. Timestamps represent the right bound of the time window used to average values.


Was this page helpful?

Thank you for your feedback!


The future of Flux

Flux is going into maintenance mode. You can continue using it as you currently are without any changes to your code.

Read more