Documentation

Window and aggregate data with Flux

See the equivalent InfluxDB v2 documentation: Window and aggregate data with Flux.

A common operation performed with time series data is grouping data into windows of time, or “windowing” data, then aggregating windowed values into a new value. This guide walks through windowing and aggregating data with Flux and demonstrates how data is shaped in the process.

If you’re just getting started with Flux queries, check out the following:

The following example is an in-depth walk-through of the steps required to window and aggregate data. The aggregateWindow() function performs these operations for you, but understanding how data is shaped in the process helps to successfully create your desired output.

Data set

For the purposes of this guide, define a variable that represents your base data set. The following example queries the memory usage of the host machine.

dataSet = from(bucket: "db/rp")
    |> range(start: -5m)
    |> filter(fn: (r) => r._measurement == "mem" and r._field == "used_percent")
    |> drop(columns: ["host"])

This example drops the host column from the returned data since the memory data is only tracked for a single host and it simplifies the output tables. Dropping the host column is optional and not recommended if monitoring memory on multiple hosts.

dataSet can now be used to represent your base data, which will look similar to the following:

Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:50:00.000000000Z             71.11611366271973
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:50:10.000000000Z             67.39630699157715
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:50:20.000000000Z             64.16666507720947
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:50:30.000000000Z             64.19951915740967
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:50:40.000000000Z              64.2122745513916
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:50:50.000000000Z             64.22209739685059
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:51:00.000000000Z              64.6336555480957
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:51:10.000000000Z             64.16516304016113
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:51:20.000000000Z             64.18349742889404
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:51:30.000000000Z             64.20474052429199
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:51:40.000000000Z             68.65062713623047
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:51:50.000000000Z             67.20139980316162
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:52:00.000000000Z              70.9143877029419
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:52:10.000000000Z             64.14549350738525
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:52:20.000000000Z             64.15379047393799
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:52:30.000000000Z              64.1592264175415
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:52:40.000000000Z             64.18190002441406
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:52:50.000000000Z             64.28837776184082
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:53:00.000000000Z             64.29731845855713
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:53:10.000000000Z             64.36963081359863
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:53:20.000000000Z             64.37397003173828
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:53:30.000000000Z             64.44413661956787
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:53:40.000000000Z             64.42906856536865
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:53:50.000000000Z             64.44573402404785
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:00.000000000Z             64.48912620544434
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:10.000000000Z             64.49522972106934
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:20.000000000Z             64.48652744293213
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:30.000000000Z             64.49949741363525
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:40.000000000Z              64.4949197769165
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:50.000000000Z             64.49787616729736
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:55:00.000000000Z             64.49816226959229

Windowing data

Use the window() function to group your data based on time bounds. The most common parameter passed with the window() is every which defines the duration of time between windows. Other parameters are available, but for this example, window the base data set into one minute windows.

dataSet
    |> window(every: 1m)

The every parameter supports all valid duration units, including calendar months (1mo) and years (1y).

Each window of time is output in its own table containing all records that fall within the window.

window() output tables
Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:50:00.000000000Z  2018-11-03T17:51:00.000000000Z            used_percent                     mem  2018-11-03T17:50:00.000000000Z             71.11611366271973
2018-11-03T17:50:00.000000000Z  2018-11-03T17:51:00.000000000Z            used_percent                     mem  2018-11-03T17:50:10.000000000Z             67.39630699157715
2018-11-03T17:50:00.000000000Z  2018-11-03T17:51:00.000000000Z            used_percent                     mem  2018-11-03T17:50:20.000000000Z             64.16666507720947
2018-11-03T17:50:00.000000000Z  2018-11-03T17:51:00.000000000Z            used_percent                     mem  2018-11-03T17:50:30.000000000Z             64.19951915740967
2018-11-03T17:50:00.000000000Z  2018-11-03T17:51:00.000000000Z            used_percent                     mem  2018-11-03T17:50:40.000000000Z              64.2122745513916
2018-11-03T17:50:00.000000000Z  2018-11-03T17:51:00.000000000Z            used_percent                     mem  2018-11-03T17:50:50.000000000Z             64.22209739685059


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:51:00.000000000Z  2018-11-03T17:52:00.000000000Z            used_percent                     mem  2018-11-03T17:51:00.000000000Z              64.6336555480957
2018-11-03T17:51:00.000000000Z  2018-11-03T17:52:00.000000000Z            used_percent                     mem  2018-11-03T17:51:10.000000000Z             64.16516304016113
2018-11-03T17:51:00.000000000Z  2018-11-03T17:52:00.000000000Z            used_percent                     mem  2018-11-03T17:51:20.000000000Z             64.18349742889404
2018-11-03T17:51:00.000000000Z  2018-11-03T17:52:00.000000000Z            used_percent                     mem  2018-11-03T17:51:30.000000000Z             64.20474052429199
2018-11-03T17:51:00.000000000Z  2018-11-03T17:52:00.000000000Z            used_percent                     mem  2018-11-03T17:51:40.000000000Z             68.65062713623047
2018-11-03T17:51:00.000000000Z  2018-11-03T17:52:00.000000000Z            used_percent                     mem  2018-11-03T17:51:50.000000000Z             67.20139980316162


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:52:00.000000000Z  2018-11-03T17:53:00.000000000Z            used_percent                     mem  2018-11-03T17:52:00.000000000Z              70.9143877029419
2018-11-03T17:52:00.000000000Z  2018-11-03T17:53:00.000000000Z            used_percent                     mem  2018-11-03T17:52:10.000000000Z             64.14549350738525
2018-11-03T17:52:00.000000000Z  2018-11-03T17:53:00.000000000Z            used_percent                     mem  2018-11-03T17:52:20.000000000Z             64.15379047393799
2018-11-03T17:52:00.000000000Z  2018-11-03T17:53:00.000000000Z            used_percent                     mem  2018-11-03T17:52:30.000000000Z              64.1592264175415
2018-11-03T17:52:00.000000000Z  2018-11-03T17:53:00.000000000Z            used_percent                     mem  2018-11-03T17:52:40.000000000Z             64.18190002441406
2018-11-03T17:52:00.000000000Z  2018-11-03T17:53:00.000000000Z            used_percent                     mem  2018-11-03T17:52:50.000000000Z             64.28837776184082


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:53:00.000000000Z  2018-11-03T17:54:00.000000000Z            used_percent                     mem  2018-11-03T17:53:00.000000000Z             64.29731845855713
2018-11-03T17:53:00.000000000Z  2018-11-03T17:54:00.000000000Z            used_percent                     mem  2018-11-03T17:53:10.000000000Z             64.36963081359863
2018-11-03T17:53:00.000000000Z  2018-11-03T17:54:00.000000000Z            used_percent                     mem  2018-11-03T17:53:20.000000000Z             64.37397003173828
2018-11-03T17:53:00.000000000Z  2018-11-03T17:54:00.000000000Z            used_percent                     mem  2018-11-03T17:53:30.000000000Z             64.44413661956787
2018-11-03T17:53:00.000000000Z  2018-11-03T17:54:00.000000000Z            used_percent                     mem  2018-11-03T17:53:40.000000000Z             64.42906856536865
2018-11-03T17:53:00.000000000Z  2018-11-03T17:54:00.000000000Z            used_percent                     mem  2018-11-03T17:53:50.000000000Z             64.44573402404785


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:54:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:00.000000000Z             64.48912620544434
2018-11-03T17:54:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:10.000000000Z             64.49522972106934
2018-11-03T17:54:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:20.000000000Z             64.48652744293213
2018-11-03T17:54:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:30.000000000Z             64.49949741363525
2018-11-03T17:54:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:40.000000000Z              64.4949197769165
2018-11-03T17:54:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:50.000000000Z             64.49787616729736


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:55:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:55:00.000000000Z             64.49816226959229

When visualized in the InfluxDB UI, each window table is displayed in a different color.

Windowed data

Aggregate data

Aggregate functions take the values of all rows in a table and use them to perform an aggregate operation. The result is output as a new value in a single-row table.

Since windowed data is split into separate tables, aggregate operations run against each table separately and output new tables containing only the aggregated value.

For this example, use the mean() function to output the average of each window:

dataSet
    |> window(every: 1m)
    |> mean()
mean() output tables
Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ----------------------------
2018-11-03T17:50:00.000000000Z  2018-11-03T17:51:00.000000000Z            used_percent                     mem             65.88549613952637


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ----------------------------
2018-11-03T17:51:00.000000000Z  2018-11-03T17:52:00.000000000Z            used_percent                     mem             65.50651391347249


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ----------------------------
2018-11-03T17:52:00.000000000Z  2018-11-03T17:53:00.000000000Z            used_percent                     mem             65.30719598134358


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ----------------------------
2018-11-03T17:53:00.000000000Z  2018-11-03T17:54:00.000000000Z            used_percent                     mem             64.39330975214641


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ----------------------------
2018-11-03T17:54:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem             64.49386278788249


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ----------------------------
2018-11-03T17:55:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem             64.49816226959229

Because each data point is contained in its own table, when visualized, they appear as single, unconnected points.

Aggregated windowed data

Recreate the time column

Notice the _time column is not in the aggregated output tables. Because records in each table are aggregated together, their timestamps no longer apply and the column is removed from the group key and table.

Also notice the _start and _stop columns still exist. These represent the lower and upper bounds of the time window.

Many Flux functions rely on the _time column. To further process your data after an aggregate function, you need to re-add _time. Use the duplicate() function to duplicate either the _start or _stop column as a new _time column.

dataSet
    |> window(every: 1m)
    |> mean()
    |> duplicate(column: "_stop", as: "_time")
duplicate() output tables
Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:50:00.000000000Z  2018-11-03T17:51:00.000000000Z            used_percent                     mem  2018-11-03T17:51:00.000000000Z             65.88549613952637


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:51:00.000000000Z  2018-11-03T17:52:00.000000000Z            used_percent                     mem  2018-11-03T17:52:00.000000000Z             65.50651391347249


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:52:00.000000000Z  2018-11-03T17:53:00.000000000Z            used_percent                     mem  2018-11-03T17:53:00.000000000Z             65.30719598134358


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:53:00.000000000Z  2018-11-03T17:54:00.000000000Z            used_percent                     mem  2018-11-03T17:54:00.000000000Z             64.39330975214641


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:54:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:55:00.000000000Z             64.49386278788249


Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:55:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:55:00.000000000Z             64.49816226959229

“Unwindow” aggregate tables

Keeping aggregate values in separate tables generally isn’t the format in which you want your data. Use the window() function to “unwindow” your data into a single infinite (inf) window.

dataSet
    |> window(every: 1m)
    |> mean()
    |> duplicate(column: "_stop", as: "_time")
    |> window(every: inf)

Windowing requires a _time column which is why it’s necessary to recreate the _time column after an aggregation.

Unwindowed output table
Table: keys: [_start, _stop, _field, _measurement]
                   _start:time                      _stop:time           _field:string     _measurement:string                      _time:time                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------------  ----------------------------
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:51:00.000000000Z             65.88549613952637
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:52:00.000000000Z             65.50651391347249
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:53:00.000000000Z             65.30719598134358
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:54:00.000000000Z             64.39330975214641
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:55:00.000000000Z             64.49386278788249
2018-11-03T17:50:00.000000000Z  2018-11-03T17:55:00.000000000Z            used_percent                     mem  2018-11-03T17:55:00.000000000Z             64.49816226959229

With the aggregate values in a single table, data points in the visualization are connected.

Unwindowed aggregate data

Summing up

You have now created a Flux query that windows and aggregates data. The data transformation process outlined in this guide should be used for all aggregation operations.

Flux also provides the aggregateWindow() function which performs all these separate functions for you.

The following Flux query will return the same results:

aggregateWindow function
dataSet
    |> aggregateWindow(every: 1m, fn: mean)

Was this page helpful?

Thank you for your feedback!


The future of Flux

Flux is going into maintenance mode. You can continue using it as you currently are without any changes to your code.

Read more